最常用的就是灵敏度和特异性,不过还有其他的,比如阴性预测值(negative predictive value, NPV)。

通常,先画一个ROC曲线,计算曲线下面积。ROC上的每个点是特定阈值下,分类的sensitivity和specificity,没多点连起来组成ROC,曲线下面积就是AUC。面积越大越好,如果AUC是1,说明模型能够完全区分要预测的类别。

如果不是1,就要考虑阈值取哪里比较好,这里就涉及到Youden index。Youden index 其实就是为了找到使得sensitivity和specificity之和最大max(sensitivities+specificities)的阈值。

另外就是考虑其他指标来评估分类模型的性能:specificity, sensitivity, accuracy, npv, ppv, precision, recall, tpr, fpr, tnr, fnr, fdr。这些指标可谓琳琅满目,不过这之间有重复的,如下,都是基于tn(真阴), tp(真阳), fn(假阴), fp(假阳)的个数进行计算。

  预测
    P N
实际 P TP FN
N FP TN

因为经常用到,就罗列了一下。

具体描述 公式 别名
tn True negative count真阴数
tp True positive count真阳数
fn False negative count假阴数
fp False positive count假阳数
specificity Specificity特异度 tn / (tn + fp) tnr
sensitivity Sensitivity灵敏度 tp / (tp + fn) recall, tpr
accuracy Accuracy正确率 (tp + tn) / N
npv Negative Predictive Value阴性预测值 tn / (tn + fn)
ppv Positive Predictive Value阳性预测值 tp / (tp + fp) precision
precision Precision精准率 tp / (tp + fp) ppv
recall Recall正确率 tp / (tp + fn) sensitivity, tpr
tpr True Positive Rate真阳性率 tp / (tp + fn) sensitivity, recall
fpr False Positive Rate假阳性率 fp / (tn + fp) 1-specificity
tnr True Negative Rate真阴性率 tn / (tn + fp) specificity
fnr False Negative Rate假阴性率 fn / (tp + fn) 1-sensitivity
fdr False Discovery Rate伪发现率 fp / (tp + fp) 1-ppv