突变注释后的过滤-variant filter
文章目录
一个全基因组或者全外显子组会产生几万、几十万乃至百万数量的突变。而目标突变往往只有几个或者几十个。我们需要大海捞针似得把我们想要分析的突变找到。突变过滤就是尽可能的将无关突变过滤掉,尽可能的保留目标突变,找出最可能致病的突变。关联性分析则不需要,因为关联性分析根据的是突变在对照和研究人群中的分布。
突变的过滤需要根据分析需要,比如需要寻找一个完全没有研究过的突变,则需要根据dbSNP来过滤等。如果需要寻找新生突变,要同时用到父母双方的突变数据。
常用的过滤条件可以分为一下几类: 1)根据突变频率进行过滤:每个位点的基因型在人群中频率是不一样的,一般来说,在人群中频率高的基因型往往没有致病性,而是背景突变,只是人群中的多态性。通常用到的频率数据库有gnomAD,ESP,ExAC,1000 Genome等,这些项目检测或搜集了从上千到成万的样本数据,并把数据开放给学术界和产业界。一般过滤的阈值有0.05,0.01,0.001等。 2)根据突变位置进行过滤:不同的分析目的,关注的突变并不一样。有人关于调控区域的突变,有人关注编码区的突变,有人关注剪切位点突变等。根据分析目的不同,需要将非关注的区域内的突变过滤掉。如果关注编码区突变,则需要将基因间、内含子、非编码区的突变过滤掉。 3)根据突变类型进行过滤:编码区的突变,有同义突变、错义突变、终止密码子突变等。同义突变虽然可能会导致疾病的发生,导致调控紊乱,但一般分析会将同意突变过滤掉(和分析目的有关,如果想要研究同义突变,则不能过滤)。往往移码突变和终止密码子突变是需要关注的。 4)根据突变危害预测进行过滤:现在有很多算法在预测位点导致的氨基酸变化的危害性,通常这些算法会分析致病的突变所处的区域、氨基酸变化类型等特征,比如PolyPhen、SIFT等,进而预测出检测出的突变危害性。有些算法会分析序列的保守型,预测突变所处区域是否保守,比如PhastCon,保守区域的突变较非保守区域的突变危害性大。此外,还可以根据氨基酸类型的带电性变化进行过滤,或者根据BLOSUM等打分矩阵分值进行过滤。不同的算法预测的危害性不一定一致。一般统计多个算法预测中,预测危害性较大的比例。 5)根据先验知识库进行过滤:注释软件可以注释关联性分析的信息,也可以注释Clinvar相关数据,这些信息在后续的突变位点解读和分析中有很重要的作用。这些信息可以告诉分析人员位点和哪些疾病有关,或者在Clinvar中的致病性评级。可以根据显著性、是否为良性突变、疾病信息等内容对突变 进行过滤。 6)根据数据库标识进行过滤:注释软件会注释突变在dbSNP、COSMIC等数据库中的编号。如果研究的疾病非常非常罕见,以往没有研究过,可以尝试寻找非dbSNP数据库中的突变。如果研究和癌症相关的突变,可以寻找COSMIC数据库中出现的突变。 7)根据遗传方式进行过滤:如果疾病呈现家族性分布,可以根据系谱图推断出的遗传类型进行过滤。比如如果是隐形突变,则只考虑病人中的纯合突变。如果有线索指示突变为新生突变,则需要根据父母双方的突变数据,将后代中同样位点的突变过滤掉。 8)根据其他条件进行过滤:突变过滤还可以有其他的方式,最终还是要根据分析目的进行选择。比如有四个散发样本的突变数据,同样的表型,往往寻找四个样本在相同基因内是否都发生突变,或者是否有相同的高危害突变(比如移码突变)。
####################################################################
#版权所有 转载请告知 版权归作者所有 如有侵权 一经发现 必将追究其法律责任
#Author: Jason
####################################################################
文章作者 zzx
上次更新 2018-06-08